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Abstract

This paper axiomatizes in two ways a standard assumption in the
economics of information—that an agent's knowledge is representable
by an ‘information partition® for a state variable. This is done using
the ‘epistemic models’ of Bacharach (1985), set-theoretical structures
closely related to deductive systems called “epistemic logies’. The state
variables may be either comprehensive or specific. One set of axioms
links partitions with the strong epistemic logic 55 and the condition
that the state variable be ‘epistemically sufficient for itself’. The other
formalizes Blackwell's notion of an ‘experiment’ and permits a much
weaker logic. Implications for strategic decision making are discussed.

Introduction

In this paper I axiomatize, in two different ways, a standard working
assumption in economics and decision theory—the assumption that a
person’s knowledge of her environment is representable as an ‘infor-
mation partition’. I do so in terms of set-theoretical structures known
as ‘epistemic models’ which are closely related to deduclive systems

called ‘epistemic logics’.

1. The formal representation of knowledge
1.1 Background

In decision theory, the theory of games, and the economics of infor-
mation there is burgeoning interest in the axiomatic basis of, and in
formal means for representing, the knowledge of rational people. At

I would like to express my thanks for valuable comments on drafts of
this paper to Robert Aumann, Elizabeth Fricker, Mamoru Kaneko, Paul
Milgrom, Dov Samet, Paul Seabright, and Hyun Song Shin.
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first this new interest centred on ‘common knowledge’ in a group of
people. Today it is increasingly drawn towards knowledge simpliciter.

The most powerful single spur to this enquiry has been Robert
Aumann’s 1976 Agreement Theorem (Aumann 1976), according to
which, under rather general conditions, if individuals’ opinions are
commeon knowledge among them, these opinions must be the same.
Aumann’s theorem has excited research because of the near paradox-
ical nature of certain consequences of it, not least ‘no-trade’ theo-
rems which deny that, in equilibrium, diverse information can explain
exchange in risky assets. In addition, there has been the question of
whether two conjectures about the structure of individuals’ knowledge
which Aumann makes in the course of his discussion of the theorem
can be put on a formal footing. To these stimuli we must add mention
of the expanding role played by the notion of common knowledge in
the theory of games.!

Within economic theory the development of axiomatic models of
knowledge was initiated by Milgrom (1981), who proposed a set of
axioms for a common knowledge operator on an algebra of events.
Bacharach (1985) sets out an axiomatic theory for knowledge of every
order; this is based, like Milgrom’s, on algebraic structures (so-called
‘epistemic models’), but notes their relationship to the classical epis-
temic logic S5. In some of the most recent work (Gilboa 1986; Kaneko
and Nagashima 1988; Samet 1987; Shin 1987) the duality between set-
theoretical and deductive modes of analysis has received increasing
attention.

There is said to be ‘cornmon knowledge between’ two persons a
and b of a proposition p if all sentences of the form ‘i knows that j
knows that i knows that ... k knows that p’ are true (1,7,k = a,b;
1 # j); thus the notion is infinitary. The generalization to groups
of more than two presents no difficulties. Common knowledge has
been in the air since Schelling (1960) drew attention to its role in
supporting equilibria in coordination games and other non-cooperative
games. In their accounts of language and other conventions, in which
common knowledge is pivotal, Lewis (1969) and Schiffer (1972) further
defined the notion, of which they were concerned to provide a finite
axiomatization.

'The idea that in a game players have reciprocal konowledge of the gane
troe and of cach othor’s rationality has a lone history (Milerom 1981 Schelline
1960): wore recently. common knowledge has Hgnred prominently in argonents
by backward induction in finitely repeated sapes (Selten 1978). It is also central

in Bayesian accounts of games, but this development is vot independent of those
springing from Awmann’s article.
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Structures resembling epistemic models first arose in the seman-
tics for deductive theories known as epistemic logics (see for example
Hughes and Cresswell 1968). These treat the knowledge of rational
persons of the propositions? of a specified formal language. One way
in which an epistemic model can be defined is as an algebraic structure
on a set of points; each point is a function w from the propositions
of the formal language to the pair {T, F}, (‘true’, ‘false’) of truth-
values; the points w are interpreted as possible worlds. One must put
restrictions on possible worlds if they are to merit their epithet. Let
k stand for ‘a knows that’; then it is only if we insist that w(p) =T
when w(kp) = T that our model reflects an epistemic logic which has
the Axiom of Knowledge, as I shall call it, kp — p. It then ‘reflects’
the epistemic logic in this sense: it makes the Axiom of Knowledge
come out ‘true’ in every ‘possible world’.?

1.2 The arrangement of the paper

Three issues in the formal theory of knowledge have been the focus
of recent attention;* this paper addresses the third of these, the ques-
tion whether we can justify the Partition Postulate—the assumption
that people have ‘information partitions’. The next section explains
why the Partition Postulate is an issue. It begins by describing the
first two issues, which are the historical source of the third; next, it
gives examples of different species of ‘information patterns’, of which
information partitions are only one; describes the traditional role of
the Partition Postulate in economics and decision theory; and notes
the association between information partitions and a certain epistemic

logic (S55) which is often thought objectionably strong. Section 3

2This is imprecise: languages consist of sentences, and epistemic logics deal
with logical relationships among sentences rather than the propositions which they
express; the distinction is, however, unimportant for the purposes of this paper.

3 Epistemic logic as an independent branch of modal logic stems from Hintikka
(1962) who, by revealing the ‘depth logic’ underlying ordinary usage, resolved old
puzzles about knowledge, such as what makes it paradoxical to say ‘p and [ believe
that not p’. But epistemic logic has thrown up its own paradoxes, such as that
of the Knower (Anderson 1983): these have resurfaced in recent claimms (Samet
1987: Shin 1987) that apparently reasonable axioms about knowledge imply the
knowledge of falseloods,

LOther enrrent issues in the formal theory of knowledge are not directly relevant
to the question I address. They include: (1) doubts about the computability of the
knowledge which epistemnie logics ascrilie to knowers (Shin 1987). doubts which are
velated bo the epistemic paradosces: (it) the relation between the logic of buowledas
and that of mwere rational beliefs (which can be mistaken) (see Hintikka 1962: Samet
1987). O potential importance for economies aud deecigsion theory is the gquestion of
what to take as the objects of knowledge (events, propositions, sentences). and the
consequences of their fintensionality” (see Bacharach 1985: Kaneko and Nagashima
1088).
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introduces the main results of the paper, two sets of conditions for
people to have information partitions. Sections 4 to 7 contain the
formal analysis. The final section considers the bearing of the results
on how we should interpret players’ information partitions in games.

2. The partition postulate
2.1 Aumann's first conjecture and the familiarity postulate

In this paper the only non-epistemic propositions I consider are of the
form s € §; s will be called a ‘state variable’, and its values ‘states’.®
For any state variable s, I shall be interested in persons’ ‘information
patterns’ for s, meaning by this what they know in different states
about which state obtains. The set of states a person does not exclude
(that is, thinks could possibly obtain) is called her ‘fix’ on the state.
We may define ‘information pattern’ with somewhat more precision
in terms of this notion: a person’s information pattern with respect
to s is a set of ordered pairs (s,5) (s € §, § C X); (s,5) is in her
information pattern just if there are circumstances in which the state
is s and her fix on the state is 5.

An ‘information partition’ (i.p.) is a special kind of information
pattern. A person has the i.p. P for s if P is a partition of X and,
for all s in ¥, whenever the state is s her fix on the state is P(s), the
member of P containing s. Aumann’s Agreement Theorem concerns
two people each of whom is assumed to have an 1.p. for a state variable
s. Aumann’s First Conjecture is a characterization of common know-
ledge in terms of these personal i.p.’s, namely: in state s the event
that p is common knowledge between the two people obtains just if
it includes P*(s), where P* is the meet of the two i.p.’s; Bacharach
(1985) gives formal expression to this conjecture and proves it by the
use of epistemic models.

Aumann’s Second Conjecture is that there is necessarily common
knowledge among people of their personal i.p.’s for s if 5 is a global
state variable. This is the conjunction of two independent claims: (a)
people have common knowledge of each other’s information patterns
for s (I shall call this the Familiarity Postulate); (b) information
patterns are i.p.’s (the Partition Postulate). The essence of Aumann’s
argument for the Familiarity Postulate (1976, 1987) is that since s
specifies how all things are, it specifies inter alia how epistemic things
are. But Aumann adds the disclaimer that this cannot be shown
within the formal model; this is capable of representing the knowledge

"Since any collection of propositions can be translated into these terms. we
lose no generality by this device,
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constituting information patterns, but not in addition knowledge about
this representation.

The reminder that formal models cannot always ‘talk about them-
selves’ is salutary. However, Aumann is unduly pessimistic: versions
of the Familiarity Postulate can be shown formally. It is proved in
Bacharach (1985) for atomic epistemic models, which are appropriate
whenever there is a finest way in which the theorist is interested in
discriminating states of affairs.® The proof rests on two properties
of epistemic models, which I shall also make use of here. Call a
proposition ‘familiar’ which is true in every possible world w of an
epistemic model. The first property is that if p is familiar then so
is the proposition that ¢ knows that p; then by induction such a p is
common knowledge in all w. Familiarity breeds commeon knowledge.
The second property is that information patterns are representable in
epistemic models for any state variable s whose states are representable

in them.

2.2 Information patterns

The form of a person’s information pattern for a state variable—in
particular, whether or not it is an i.p.—depends crucially on two
things: the strength of her rationality, and the globality of the state
variable. Some simple examples illustrate. In Figs. 1 to 4 the points
represent states, the closed curves enclose fixes, and the arrows lead
from states to the fixes which can occur in them. Call the person
a. In Figs. 1 to 3 a’s information pattern is a function; the fix on
s is determined by s alone. In this case I shall also say that s is

‘epistemically sufficient for itself’ (e.s.i.).

Let ¥ = {1,2,3,4}. In Fig. 1, a has an information partition. In
Fig. 2, the fixes cross over. However, the following argument suggests
this pattern may not be possible. Suppose s = 1, then a can reason:
“if s were 3, I would not know that s wasnt 4. But I do. So s # 3.
Thus she does not allow the possibility s = 3, contrary to the assumed
information pattern. But notice that this argument appeals to two
further premisses: (a) a knows the fixes she would have in other states;
(b) she satisfies the requirement that il one knows a certain thing
one knows that one does; I shall call this requirement on someone’s
knowledge the Axiom of Transparency. It is by no means obvious
that these additional premisses must be true; nor, then, that Fig. 2 is

SBacharach assmues the Pactition Postulate, Dot it plays no essential role in
the result. Recently. Shin (1987) has generalized Bacharach's result bo non-atomic
epistemic models,
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Figure 1

Figure 3

impossible. In Fig. 3 the fixes form a topology, and the above argument
does not apply; but this configuration also leads to contradiction if we
accept (a) and that (c) a satisfies the requirement that if one does
not know a certain thing then one knows that one does not, which
I shall call Axiom of Wisdom. If s = 1, a reasons: ‘if s were 3, I
would know that s # 1 and s # 2. But I don’t. So s # 3. The
Axioms of Transparency and Wisdom may be regarded as constraints
of rationalily. These examples suggest that the Partition Postulate
may fail in the absence of rationality constraints.

In Fig. 4a, 2 = {1,2}. The state variable is not e.s.i., and a fortior:
¢ does not have an i.p. Failure of s to be e.s.i. implies that there is
another state variable which affects a’s fix on s, and so that s is not
a global state. The pattern in the figure could arise if, for example, a
had an i.p. for the state variable (s,t) as in Fig. 4b (where 11 denotes
(1,1), etc.). This illustrates that the property of partitionality of an
information pattern does not project. Nor does it ‘project outwards’:
an i.p. for s does not imply one for (s,t). I note that the pattern in
this example is possible even if a satisfies (a) and both the Axiom of
Transparency and the Axiom of Wisdom.
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Figure 4a

Figure 4b

2.3 The use of information patterns

Information patterns figure prominently in economics and decision
theory, but their assumption has seldom been defended, and never
in a fully formal way. They have been used to model, among other
things: (a) players’ knowledge of the current position in the course of an
extensive-form game (Von Neumann and Morgenstern 1944); (b) the
possible future information-states of a Bayesian decision maker who is
choosing a decision rule (Radner 1961), for example of an individual
consumer or producer in an economy with markets in state-contingent
commodities (Radner 1968); (c) the differential private information of
agents who draw inferences from each other’s public behaviour, as in
the above-mentioned work of Aumann.

I shall comment on the role of i.p.’s in games in §8. They arise as
a model of (b) in the following way. The decision maker (a, say) will
presently observe a ‘signal’ y given by a function 7 (the ‘information
function’) of a variable s over a set X; this will put her into an
information state in which her fix on s is 5,, the equivalence class
of ¥y modulo 5. The proofs of epistemic commonplaces are often
non-trivial, and so it is, we shall find, with this intuitively obvious
claim. One reason is that the intuitive conclusion that her fix is §,
depends on the idea that all she knows about s is the value of the signal
function, and this idea is not easy to pin down rigorously. Be that as
it may, the claim implies that a has an i.p. for s, since the S, partition
Y. I shall call situations of the form jusi described ‘experiments’,
following Blackwell (1953). The model has proved extremely tractable
and fruitful.”

TSituations in which the signal is ‘noisy’. that is, a random function of the
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Suppose a is a Bayesian decision maker with a probabilily measure
on ¥, and that after observing the signal she must do an act whose
payoff depends on s; it is a familiar thesis that she may proceed by
choosing in advance a ‘decision function’ or ‘strategy’ §, a function
of her future fix S, since her expected utility now from choosing §
optimally is equal to her expected utility now from the observe-first-
and-decide-after policy.® Now in order to evaluate a strategy & in
which she will do §(s) if her fix is .5, she must evaluate the probability
that her fix will be S, and in order to do this she must identify a
set of states in which she will have it. Thus the rationale of strategic
decision making depends on there being a function from s to her fix
on s, that is, on s being e.s.i. That there is such a function is ensured
by her having an i.p.?

In some theories in which i.p.’s have been used, weaker assumptions
will do the job. For example, for the Agreement Theorem it has been
shown that the information patterns need only be topologies (Kaneko
1987; Samet 1987; Shin 1987). But such redundancy findings are
unlikely in other applications. The question will not be pursued in
the present paper, whose purpose is to investigate the conditions of
existence of information partitions, not their dispensability.

2.4 Partitionality and strength of knowledge

An equivalence has long been known between two conditions on a
person’s knowledge: that it obeys a certain epistemic logic, 55, and
that it is partitional in a certain way; I shall call this equivalence the
Partition Theorem. A helpful, if strictly improper, statement of the
partitionality condition in question is that, as w ranges over the set 2
of all possible worlds, the person’s fixes on w partition §2.'" The same
idea can be rigorously expressed in terms of an ‘atomic state variable’

state, can be subsumed under the above formulation; the ranking of information
functions by ‘informativeness’ (the utility in varying circnmstances of the informa-
tion they convey), is identical with that according to the relative fineness of the
corresponding i.p."s; and so forth.

88 is mndelled as deciding to proceed tlins: clioose now (8 = 1) a function 4
of y and at ¢t = 2 if she observes y do act &{y). If slie chivoses & her utility payoff
will be w(s, a) = u(s, 6(n(2))). At £ = 1 she has a subjective probability function
o11 E1 and she chooses & to maximize Euls. 8(ny(=))).

Furtherinore, the decision maker must know this ‘ix function’. We shall see
in §5 that this is guaranteed if she has an i,

mhuprnp::r because possible worlds are not stales, and the notion of fix is uot
defined over thew, Furthermore. the set of propositions true in a possible world
is ab least conntably infinite, and so is nob in general expressible in a sentence,
This creates a difficulty since formal theories of knowledge express the contents of
knowledge in sentences,
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s rather than w.'' In either formulation the variable for which the
person has an i.p. is a complete specification of relevant features of
the world. The logic S5 contains among its axioms both the Axiom
of Transparency and of Wisdom; we glimpsed earlier, in the examples
of §2.2, the potential of these axioms to force partitionality.

Unfortunately for the project of justifying the Partition Postu-
late, the epistemic logic S5 appears very, perhaps excessively, strong.
The Axiom of Wisdom, in particular, has to many seemed question-
able even for ideally rational agents (Bacharach 1985; Eberle 1974;
Hintikka 1962; Rescher 1984). Binmore and Brandenburger (1988)
note that it is equivalent to the implausibly exigent ‘if @ doesn’t know
she doesn’t know something, then she knows it". If we take knowledge
to be ‘active’, so that knowing that p entails having a thought with
the content p, then unawareness of issues—the mere absence of issues
from one’s epistemic agenda—gives a host of violations of the Axiom
of Wisdom; but such epistemic gaps are commonplace, and moreover
they give rise to informational asymmetries in strategic interactions
that may be crucial.'? Another rich seam of violations is that a
person may be falsely convinced of something.!?

3. Two bases for information partitions

Let us take stock. On the one hand, i.p.’s are a fundamental tool in the
analysis of agents’ knowledge in decision theory and economics; on the
other, the Partition Theorem suggests that to be entitled to use them
we may have to accept a false picture of epistemic rationality which
is too high a price to pay for them. Things, however, are not as bleak
for the defence of i.p.’s as this picture paints them, for the connection
between the i.p.’s we are interested in procuring and 55 is less strict
than appears at first sight. IL.p.'s are needed for certain modelling
purposes, and two basic features of the typical modelling problems
lessen the relevance of the Partition Theorem. These are that it may
be appropriate to assume ‘endowments’ of knowledge exogenously, and

1A version of this thoorem is given in Bachiarach (1985).

uMilg‘rﬂm and Roberts (1986) note that a seller may withhold from a potential
buyer his private information about some dimension of his product because ‘bring-

ing nup’ the question way be damaging (even when the information is favourable it
may be, by arousing fears where none were present). The seller is cov because he
suspects the buyer is ignorant of her own jgnoraues about the dimension becanse
she hias not “thought of it".

IIf I am convineed that p then, trivially, 1 s convineed that 1 have a trae
belief that p: and at least soane varieties of convietion carry with them the belief
that they are Justificd. In that case [ believe that [ have a justified true belief tliat

p and so cannot know that 1 do not know it. Yet I do not know it, for p is falze.
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that the state variable of interest may be ‘topical’ rather than global.
The two main results of this paper ('Theorems 1 and 2) give conditions
for i.p.’s which lean heavily on these two features respectively, and at
the cost of some over-simplification might be called the ‘endowment
theorem’ and the ‘topicality theorem’.

55 and the other classical systems of epistemic logic are silent on
the empirical sources of people’s knowledge of the world. (In this they
resemble subjectivist models of agents’ beliefs which merely impose
a coherent (probabilistic) structure on these beliefs.) The concrete
situations in which people find themselves are partly characterized by
epistemic ‘endowments’. On one, ‘situationist’, methodology, it is not
the job of social scientists to trace the behaviour of agents back to
the ultimate sources of human knowledge, but rather to show how it
depends upon these more or less ‘near-in’ sources of it; where these
come from is exogenous to the enquiry in hand. This contrasts with the
globalist methodology of the Neo-Bayesians. Most of economic theory,
even general equilibrium theory, is situationist in method and assumes
epistemic endowments exogenously. For example, it is constitutive of
being in an extensive-form game that you receive, when it is your turn
to move, one or another ‘umpire’s report’; and the role of informational
endowments is explicit in economic theories in which agents receive
market signals or face other experiments in the sense of §2.3.

What agents know consists of these endowments plus their infer-
ences from them. Endowments and inference are alternative ways
of acquiring knowledge: like the owner of a monetary fortune, the
possessor of an i.p. may equally well have started out poor and gifted,
or rich and dull. Theorem 1 exemplifies this truth. It is shown that
if a person’s epistemic endowment is of a certain form, she ‘ends
up with’ an i.p. though only satisfying the epistemic logic known as
T; T is substantially weaker than 55, lacking the Axioms of Trans-
parency and Wisdom. The endowment in question is that of the
signal-receiver in the ‘experiment’ model as we intuitively interpret
that model; Theorem 1 may be regarded as a formal demonstration of
the ‘epistemic commonplace’ that the signal-receiver in an experiment
has the information partition induced by the information function.

The Partition Theorem relates to a global state variable, which
specifies how everything is, but the question this paper addresses is for
any state variable, global or otherwise. We must therefore ask whether
the Partition Theorem generalizes to an arbitrary state variable s.
We find that it does not do so unconditionally: for arbitrary s, 55
neither implies nor is implied by an i.p. for s. Theorem 2 provides the
appropriate generalization and, thereby, a ‘strong knowledge’ basis
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for the Partition Postulate for an arbitrary state variable. Say that
someone's knowledge is ‘strong w.r.t. s’ if il obeys the Axioms of
Transparency and Wisdom restricted to propositions of the form s € 5.
Theorem 2 says that strong knowledge w.r.t. s is a sufficient condition
for an i.p. for s if s is e.s.i. This raises the question of when variables
will be e.s.i., which I discuss briefly in §7. It also provides some further
comfort for users of i.p.’s, since the strong axioms are the less strong
the more specific are the state variables for which they are adopted.

4. Epistemic models

Definition. Let I be a finite set (of persons). An epistemic model
(e.m.) is a pair (F, K), where F is an atomic sigma-field of sets, with
universal set {1, and K is a set of operators {K; :1 € I} on F.

Interpretation. A point w of 2 is interpreted as a ‘possible world’
(p.w.), a specification of a state of affairs obtained by evaluating each
proposition of some reference class in which we are interested as either
true or false; if E is the set of p.w.’s in which a given proposition p of
this class is valued true, it is called the truth-set of p or the event that
p, and written |p|. If E is the event that p, K;E is interpreted as the
event that i knows that p. Further, if for some event E*

E* = NK: ... Ki. B,

where the intersection is over all strings (i,,...,1,) of elements of I,
E* is interpreted as the event that there is common knowledge among
I that p.

The interpretation I have just given stands up only if possible
worlds are subjected to a set of restrictions corresponding to the
meanings of the logical connectives A (and), - (not), — (if...then...),
etc. figuring in complex propositions. These restrictions are equivalent
to restrictions on the mapping | - | of propositions into events. Thus
we insist that [pAg| = |p|nlql, [-p| = —Ipl, Ip — gl = —|p|U|g| (where
‘~" denotes complement in §2), and so forth. | henceforth assume
this to be so. Similarly, the meaning of the epistemic connective k;
(¢ knows that) forces a set of restrictions on the mapping into events
of propositions which contain ‘i knows that’. In this case, since we
may understand this connective in various ways, there may be several
non-equivalent plausible sets of restrictions. Each such restriction is
in effect an axiom which partially defines the notion of knowledge. 1
next define one plausible set of restrictions of this sort, with which I
shall work in most of the paper; the labels beside the restrictions are
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those of the axioms, ete. to which they correspond. E, F range over
F, and i ranges over [.

(A1) K;:ECE (Axiom of Knowledge)
(A2) Ki(EnF)=KEnK;F (Conjunction Axiom)
(A3) K: =10 (Rule of Epistemization).

Interpretation. (Al) is equivalent to the restriction |k;p| C |p| on
the proposition-event mapping. This restriclion means that in any
possible world in which it is true that 1 knows that p, p is itself true;
thus it expresses the conceptual truth that knowledge is factive, the
Axiom of Knowledge. In the same way (A2) expresses the axiom that
someone knows the conjunction of two things just if she knows each of
them. (A3) says, grosso modo, that a person necessarily knows that
which is necessarily so, and does the work of the Rule of Epistemization
in epistemic logic.

I shall denote by 900 the class of all e.m.’s which satisfy (Al)-
(A3). I shall use the following simple properties of Mi 0, whose proofs
I omit.

Proposition 1. (a) If E C F then KE C KF; (b) if E C F then
—~K-EC —K-F; (c) if K(EUF)={} then K-ECKF.

The logic T is a weak epistemic logic which lacks the Axioms of
Transparency and Wisdom. It is obtained by adjoining to propo-
sitional calculus the Axiom of Knowledge, the Conjunction Axiom,
and the Rule of Epistemization; there is, predictably, an intimate
connection between T' and the class M 0. An e.m. is said to verify
the proposition p if [p| = £ in it. It can be shown that p is verified
by all e.m.’s of M0 if and only if p is an axiom or theorem of the
epistemic logic T.!* This connection legitimizes the use of MO to
establish results about the reference class of propositions. Showing
that p is verified throughout M0 amounts to a proof of p (for our
success means that it can be proved in T'), while displaying an e.m. of
MM 0 in which pis not verified permits the conclusion that —p is a logical
possibility (for —p is consistent in T').'" This generalizes usefully: if
i 0, is the subclass of e.m.’s of M 0 which verify the proposition p,
then showing that g is verified throughout Mi0, shows that g follows

M See for example Hughes and Cresswell (1068, Ch. 17, Theoremns 1 and 2 and
pasairm).

13 For instance. in this way we can prove k;(p — q) — (kip — k,q). and we can
show that it is possible that kp A =k ki p.
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(in T') from p, and displaying an e.m. of M 0, in which g is not verified
shows thal —g is consistent with p (in T').

Definition. If X is a set {8, : k = 1,...,n} I shall say that s is a
state variable over ¥ if exactly one proposition of the form s = s, is
true.’® If s is a state variable over X, for all ' € X, § C X, |s'| will
denote the event that s = s’ and |S| the event that s € S. I shall write
v for the proposition that s is a state variable over ¥. Then the event
that s is a state variable over X' is the set

0] = Useg [Is1 N Ny — 16°1) -

Let us now introduce a further restriction on the mapping | - |, viz.
[v| = 12. (1)

I note that (1) is met just if {|s| : s € X'} is a partition of f2.

I write 90 for M 0, the class of e.m.’s which satisfy both (A1)—(A3)
and (1); if p is any proposition, let 91, be the subclass of e.m.’s of Mi
which in addition verify p. Just as 900 represents the epistemic logic
T, so 9 represents the formal theory set in T whose sole non-logical
axiom is v.

It is worth pausing to consider the interpretation of a single e.m.
of M. It collects a set of alternative possible states of affairs in which
the axioms of the underlying theory, including v, are true. But not all
such states of affairs; hence an e.m. may verify propositions which are
not entailed by the theory. For example, somme e.m.’s of 9 verify that
s has two possible values, others the Axiom of Transparency, and so
on. The variation in states of affairs that a single e.m. encompasses is
needed to represent epistemic phenomena, for these involve persons’
having atlitudes towards a range of possibilities. A particular e.m.
defines an ‘epistemic set-up’, that is, a collection of states of affairs in
each of which a person has such and such epistemic attitudes towards
the others. Whereas in a single possible world in an e.m. it is either
true or false that a person knows that s £ §, an e.m. shows the way her
knowledge of s varies as circumstances vary; thus it can represent what
Von Neumann and Morgenstern call a person’s ‘knowledge capacity’.
An information partition is such a capacity.

From now on I shall be mainly concerned with the knowledge of a
single individual, a; for neatness I shall write K for K,, k for k,, and
so forth.

WP he restriction to fnitencss is wade chicfy to avoid the necd to appeal to
episteinic logics which treat knowledge of propositions which quantify over infinite
domains.
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5. Information patterns in M

Definitions. For any e.m. of M, I define the following events. The
event that a has fiz S on s is

fix ST = N_s(& —[s]) N 1s(—K —|s]) (2)

(where —S denotes the complement of § in ). If ¢ is a function from
X to P(X), the event that a has the fiz function ¢ for s is

|£fg] = Ngl—Is| U lfix $(s)]] . (3)

I note that |[f{¢| = 2 or @. Thirdly, the event that a has the informa-
tion partition P for s is

lipP| = [f{] (4)

where P = {¢(s) : s € £} and P is a partition of X

Interpretation. The event |fix S| is the set of possible worlds in
which the following is true: a rules out all and only the values of s
outside S (equivalently, she ‘allows’ all and only values of s in §); that
is, a’s ‘information set’ for the variable s or, in a terminology which
is gaining currency, a’s ‘fix on &', is 5. The event in (3) is the event
that a ‘has the fix function ¢’ in this sense: for all s’ in X, if s = &
then a's fix on s is ¢(s'). Finally, the event in (4) is the event that a
‘has an information partition’ in this sense: she has a fix function ¢
for which the ¢(s) make up the partition P of X. Thus to have an i.p.

is to have a special kind of fix function.

Although the definition of fix does not require the fix to contain
the true value of s, it must. For we can show that | —fix(5)|U|S| = 2,
or, equivalently

Proposition 2. Ifix(S)| € |S|.

Proof. By (2) and (A1), [ix(S)] € N_s(K —[s]) € N_s(~Is]) = |5]-
|

Thus if a person has an i.p. P, then if the state is s her fix is P(s), the
member of P which contains s, in accordance with the usual meaning
of ‘information partition’.

There is no reason why a person cannot have a certain fix function,
according to an e.m., in some circumstances and not in others; no rea-
somn, that is, why the event in (3) must be either & or f2. Specializing,
someone may have a certain i.p. only in certain circumstances. To say
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that the fix a person has on s may vary with s is simply to say that
at each value of s her fix may depend on other factors besides s; for
instance, how my fix on the score in the (cricket) test match varies
with the score depends on whether or not I can get the ball-by-ball
commentary on my radio. Consider the example of Fig. 4b. It may
be represented by an e.m. of 9, yu,;, say, which has events for values
of t as well as of 5. Let ¢,, ¢ be the two fix functions on X' defined
by ¢é1(1) = {1}, ¢1(2) = {2}, ¢2(1) = ¢2(2) = {1,2}; then the events
that a has the fix functions ¢; and ¢; are the events [t = 1| and |t = 2|
respectively. I remark that the existence of y; permits the conclusion,
for the reasons mentioned earlier, that it is not a theorem (in the logic
of T') that a’s fix on s is independent of .

On the other hand, an e.m. may verify that a has the fix function
¢; it does so if, in it, |s| C [fix¢(s)| for all s € X. If the e.m. p verifies
that a has the fix function ¢ (or the i.p. P), I shall say that a has the
fiz function ¢ (resp. i.p. P) in p. Similarly, I shall say that there is
common knowledge among I that p in p if p verifies the event that
there is common knowledge among I that p.

Let & denote the subfield of F consisting of s-events, that is, events
of the form |§|, § C X. 1 shall say that a’s knowledge is closed w.r.t. s
in p (alternatively, s is epistemically sufficient for itself (e.s.i.) in p)
if § is closed under K in g. I shall use the following two points later.

Proposition 3. The person a’s knowledge is closed w.r.t. s in p if
and only if a has a fix function in pu.

Proof. (a) (only if). For any S C ¥, |fix §| is, by (2), an intersection
of events of the forms K|S'| and —K|§"| (§', §" in X). By closedness
these are s-events, hence |fix §| = f(S) for some subset f(S) of X. Set
¢(s) = S if and only if s € f(5); then |[{¢] = 2. (b) (if). If @ has
fix function ¢ in p then, for all s, K — |s| = —|¢(s)|, an s-event; hence
for any S5 C ¥, by several applications of (A2), K[S|=[)_s K — |s]
is an s-event. [
Proposition 4. If a has the fix function ¢ in p then in u there is
common knowledge among [ that a has the fix function ¢.

Proof. K;, ... K; |[{{¢| = 1 for every string (i;,...,1,) of elements
of I, by (A3). ]

6. The simple experiment basis for information partitions

Definition: For any lwo fix functions ¢, ¢ if

$1(5) C ¢a(s) forall s € ®
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say that ¢, is as sharp as ¢, and write ¢; > ¢2. The binary relation
> partially orders the fix functions. In virtue of this definition, a has
a fix function as sharp as ¢ just if, for all s in X, if the state is s she
rules out all states outside ¢(s); thus the set

1 = ¢l = Nel—lsl UN_gay(Ks]]

is the event that a has a fiz function for s as sharp as ¢.

Definition: Call an e.m. g canonical given p, if u € M, and there is
a fix function ¢ such that

fig) = 2inpu (5)
[ff = ¢| = 2 in all e.m.’s of M,,. (6)

Write @ for the set of fix functions which satisfy (6). Then

Proposition 5. If ¢ satisfies (5) and (6), ¢ is maximal w.r.t. > in
b,.

Proof. If ¢' € &, by (5) there is an e.m. in which |[{f = ¢'|N|f {¢] # ©
and in which therefore the event that ¢ = ¢' is non-null, whence
¢ = ¢'; since ¢ € ¥, it is maximal in ¥, "

Interpretation. We have seen that verification throughout 9, is
equivalent to derivability in T from p. It follows from Proposition 5
that if i is a canonical e.m. p, then in g, a has the sharpest fix function
that is guaranteed by the assumption p (in the logic of T'). In other
words, a has in the epistemic set-up described by p the knowledge
(capacity) concerning s that is a consequence of p (in T'), and no
more. An immediate corollary is that, given p, in order to explain a's
having a fix function strictly sharper than ¢, we must make further
assumptions about her knowledge. Thus ¢ is what we must conclude
she knows if she is a subject of T and if all we assume her to know is
what is given in p.

I next define a proposition, e, which expresses in a formal way that
a is the observer in an experiment. The main result of this section is
that in an e.m. which is canonical given e, a has an i.p. Let us specify
P to be the partition of ¥

P =d8sBnl (7)

where
Si={sins--ssimip}t G=1,...,m).
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Let Y= {y1,...,Ym } be a set (of observations), and 5 a function from

X to Y such that
1 induces the partition P of X'.

By a knows n let us mean that a knows, for each state s in ¥, that if
s transpires then y takes the value n(s) and takes no other, and by a
receives y let us mean that, for all observations y in Y, if y transpires
then a knows that it does. Finally, let e be the following proposition:

(e) s is a state variable over ¥, a knows 7, and a receives y.

Consider the events

E, = |v|

By - K[ng[—m Uly =1n(3]!]] (®)
Ey =Nyervl-ly=y'lU Ky =yl

where |y =;y'| is the event that y takes the value y' and no other
defined by

— [m iy y"n] , (9)

Interpretation. E;, E;, E; are respectively the events that s is a
state variable over X, that a knows 5, and that a receives y. Thus the
event that e is the set

|E|=E1HE2HE;+

We may also describe |e| as the event that a is the observer in an
experiment with information function 1. The main result of this
section is

Theorem 1. If p is canonical given e then a has the i.p. P in p.

Proof of Theorem 1. (a) We show first that |{f = ¢| = 12 in every
e.m. of M, , where ¢ is the fix function agreeing with P. For this it
suffices to show that in every such e.m., for all 5,5, if ' ¢ P(s) then
|s| € K—|s'|. Write y = n(s), ¥' = n(s'), and write |y|, || for the
events that the observation is y, y' respeciively. Consider any e.m. of
Mi,. Since E; = 12, by (Al) the argument of K in (8) is §2, whence
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|s] C |y| since (—|s| U |y|) is a factor of this argument. But |y| C K|y
since Ey = f2, so
|s] € K1yl (10)

Since s' ¢ P(s), y # ¥'. The event (—|s'|U |y =1n(s')]) = 2 as it is
also a factor of the argument of K in (8); hence (—|s'|U —|y|) = 2 by
(9), K(—|s'|U—|y|]) = 17 by (A3), and K|y| € K-|s'| by Proposition 1.
Thus |s| € K—|s'| by (10).

(b) Secondly, we display an e.m. g of M in which E, = E; = E; =
lip P| = 2 and which is therefore an e.m. of M, in which |ip P| = 12,
and so, in view of (a), canonical given e. It follows at once that, as
the theorem asserts, |ip P| = f? in every e.m. canonical given e. Let
{2 be the union of the disjoint sets 2; (7 = 1,...,m) where §2; is the
set {71,...,J0(3)}. Por i =1,...,m, set

lsjel = {3r} (r=1,...,n(j)) (11)
lyil = 2; (12)
K|S;| = 02; (13)
K—sjr| = =925 (r=1,...,n(j7)). (14)

This specifies p.'” It is easy to see that u verifies E;, by (11). From
(11), |S;| = f2j, whence by (12) the event that, for all 7, if s € §;
then y has the value n(s) and no other, is 2; provided p1 is in i, the
event E, that a knows this is also 2, by (A3). From (12) and (13)
Kly;| = lyj| for all j, confirming that Ey = 2. By (4), |ip P| = 12 if,
for each 7, and for each sin S;, (i) |s] € K-{si.| for all k #£ j and (ii)
|s| € —K—|s;,| for r = 1,...,n(j). But |s|] C 2; by (11); (ii) follows
by (14), and |s| C 2; C K|S;| € K—|si| by (13) and Proposition 1
since |Sj| C —|ss.| by (11). It remains to check that p1 is in 9. It is
clear that the non-epistemic events given in (11) and (12) conform to
the assignment rules. It is known (Hughes and Cresswell 1968) that
the operator K does so if there is a reflexive binary relation R on 2
such that, for all events F in F,

KE={wefl:Rw)C E}.

These requirements are met by the relation R defined by R(jr) = 12;.
|

""But for the other K=, The prool goes Bhirongh witlont difficulty if. fiw
example, we make all but o ignoramuses.
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Remarks on Theorem 1. Say that a ‘conducts the simple exper-
iment (e, T)’ if she has just the knowledge yielded by e in T; that
is, if she knows as much about s as, and no more than, follows in
T from the assumption e. Construing ‘knows as much about s’ as
the binary relation =, Theorem 1 says that a person who conducts
the simple experiment (e,T') has the i.p. P. The theorem thus gives
precise form to the old intuition that someone in an experiment has
the i.p. induced by its information function. It makes precise, among
other things, the intuitive idea that this is so because such a person, to
begin with, knows only the information function and the signal. The
notion of her ‘knowing to begin with’ is formalized by asking what
follows from the assumption e. The notion that she knows only this
to begin with is captured by the maximality of the i.p. with respect
to =, and the consequence of this maximality pointed out above.

It is clear that if a were, in real time, provided with the knowledge
specified in e, she would be able to arrive at the knowledge in P by a
sequence of real-time inferences. This is because the axioms of T that
yield for us the conclusion that she has the i.p. P are conditionals in
which the antecedent gives an item of knowledge and the consequent
knowledge of something deducible. However, epistemic logics such as
T, and likewise the corresponding systems of epistemic models such
as M, do not treat the person’s deductions explicitly. (For formal
epistemic theories that do, see Eberle 1974; Kaneko and Nagashima

1988).

7. The strong knowledge basis for information partitions

In this section I give the second explanation of 1.p.’s, in terms of
‘strong’ knowledge. In it, having an i.p. with respect to s depends
on having knowledge that is strong—that is, satisfies the Axioms of
Transparency and Wisdom—at least where s-events are concerned.
But this is not enough by itself. 1 show that for i.p.’s to follow,
knowledge must be closed w.r.t. s as well as strong for s. This prompts
the question why and when someone’s knowledge should be closed
w.r.t. a variable. One direction this question leads us is back to simple
experuments.

Definition. If g is an e.m. of i, I shall say that a’s knowledge 1s
strong w.r.t. s in p for all events E in §

(Ad) K;EC K;K;F (Axiom of Transparency)
(A5) ~-K;ECK;—-K;E (Axiom of Wisdom).
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As before, | have labelled the restrictions on the assignment of propo-
sitions to events with the names of axioms of epistemic logic to which
they correspond; here, however, they apply only to propositions con-
cerning s.

Theorem 2. A person has an i.p. for 5 in an e.m. p of 9N if and only
if in p her knowledge is closed w.r.t. s and strong w.r.t. s.

Proof of Theorem 2. (a) Let S be any subset of . For necessity we
must show that (i) K|S| = |S'| for some subset S’ of X, (ii) K|S| C
KK|S|, (iii) —K|S|C K—XK|S|. Write J for the set = {j : §; C S} of
the indices of the members of P that § completely includes. (i) From
(2)-(4) and (7) we have, for any sy € S,

sl € N_s, (K~Isl) 0 N, (~K—ls]). (15)

Say sy € S§j. Suppose first j € J. From (15), |s8y] € [_s. K—
ls| = Kﬂ—s; —|s| = K|S;| € K|S|, by (A2) and Proposition 1 (Bintﬂ
|5;| C |S| by nonepistemic assignment rules). Suppose on the other
hand that j ¢ J; then there is 5; € §; such that |s;| C —|S|. But then
|sa| € ﬂSj —K—|s| € —K—|s,| € —K|5| from (15) and Proposition 1.
Since [y |s0] = £ by the definition of M, K'|S| = |J, |S;|, and by the
assignment rules

K|S| = |U,S;] = 15| say. (16)

(ii) By (16), KK|S| = K|S'| = |Uy ;| where H = {j : §;  §'},
by the argument of (i). But then H = J and KK|S| = K|S|. (iii)
K—|S| = |U_;S;| = K|S"| say, where —J is the complement of J
in I; whence, similarly, K—K|S§| = ||J; §;| with H = —J, and so
K-K|§| = -K|S|.

(b) Suppose knowledge is closed and strong w.r.t. s. By closedness,
KS € § for all §in 8, so writing K' for the restriction of K to S,
p' = (S§,K') is an e.m. of M. Hence by Theorem 1 of Bacharach
(1985) there is a partition @ of X such that in g’

lip Q| = 12 (17)

provided that, for all §, §1,8>,... in &, (i) KSC S, (i) K(S;n
SaN...)=KS5NKS,;N..., (ii) KSCKKS, (iv)—-KSC KKS.
Now (1) holds by (A1), (ii) holds since (A2) implies K(S; NS N...N
S5,)=KS5 NKSn...nKS, for all n and X is finite, and (iii) and
(iv) hold by hypothesis. Hence (17) holds in p'; that is, for all s,
|s] € |ixQ(s)| in p'. But |fix@(s)| in p' is an intersection of sets of
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the forms K'|S| and —K'|S|, S € S, and so identical to |fix Q(s)] in
. Thus for all s, |s] C |fixQ(s)| in p and (17) holds in p. =

Remarks on Theorem 2. When is a state variable expistemically
sufficient for itself? If s stands for a comprehensive specification of all
relevant matters, it is so trivially, since the facts of s-knowledge are
relevant matters. It is this case which underlies the Partition Theorem,
and the Neo-Bayesian, globalist, concentration on this case helps to
explain the unjust incrimination of i.p.’s by association with §5. But
globality is not necessary: s is e.s.i. if it specifies states of affairs on
which all knowledge, and so in particular s-knowledge, supervenes;
that is, if there is necessarily a universal law which gives knowledge-
states in terms of s. Such claims have been defended in case s is
a complete physical description of the world (Kim 1978). However,
this leaves s of astronomic dimension, and high dimension of the state
variable militates against salisfaction of the strong axioms. In any
case, it is of little help to the social scientist seeking a justification for
the Partition Postulate for a topical variable ¢, for it only gives i.p.’s
for a, from which we may not infer i.p.’s for ¢, even if { is a subvector
of 5. It is the variable we are modelling that we need to be e.s.i. One
epistemic set-up in which this is so is one with which we are familiar—
the simple experiment. For in an epistemic model canonical for e, a
has an i.p. by Theorem 1, and her knowledge is therefore closed w.r.t. 5
by Proposition 3. Ironically, here, where we are assured of closedness,
we have no need of it!

8. Remarks on strategies

Recall that standard accounts of how individuals may make decisions
under uncertainty by means of strategies depend on their knowing
their own (future) fix functions. By Proposition 4, someone knows
her current fix function in the set-up described by u if she has that
fix function in p. For this, by Theorems 1 and 2, it suffices that
either she ‘conduct a simple experiment' or her knowledge be closed
and strong. This point may be generalized to deal with knowledge of
future fix functions by treating the same person a at different times
as two members of I, al and a2 say. For then a model g which
gives a basis of either kind for a's having an i.p. at time 2 allows us
to conclude through Proposition 4 that |K,; K,zip,,¢| = 2 in p, in
obvious notation.

The origins of information partitions lie in games in extensive form,
where too they are instrumental in allowing rational choice to be
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defined in terms of strategies. | have suggesied two ways of axiomatiz-
ing i.p.’s. It is of interest to ask whether either or both are plausible
for the i.p.’s of players in the extensive form—and if both, which the
more? Consider the situation of the player to move, and let s denote
the current node. Note that s is e.s.i., because of two features in Von
Neumann and Morgenstern’s conception of a game: (a) the current
node identifies the game’s past (a game-tree has no loops); (b) a
player's knowledge of the current node depends only on the game’s
past. It is at bottom (b) which, by ruling out mirrors, espionage and
the wisdom of experience, makes a game an epistemically closed world.
Theorem 2 now assures i.p.’s if players meet the full demands of §5.1%

However, Von Neumann and Morgenstern's own explanation (1944,
§9.1.5) of why players’ information patterns are i.p.’s in effect proposes
a simple experiment basis for them. The player to move is told, in
the ‘umpire’s report’, the values of certain ‘personal functions’ of
the sequence of anterior choices, ‘and no more’. ‘This amount of
information operates a subdivision of [the set of current nodes| into
several disjunct subsets, corresponding to the various possible contents
of [her| information’. Von Neumann and Morgenstern lack our means
to do it, but clearly intend to make the assumption that a player knows
her personal functions. Thus a player has an endowment of form e, and
the proviso ‘and no more’ permits the conclusion that she conducts a
simple experiment. Theorem 1 therefore provides formal grounds for
Von Neumann and Morgenstern’s explanation of i.p.’s; in addition, it
shows that, in it, game-players only have to be T-rational.

The question whether players have i.p.’s arises elsewhere in game
theory. May we so represent their uncertainty about the n-tuple
s of strategies? Aumann (1987) assumes i.p.’s with respect to a
state variable describing ‘all parameters that may be the object of
uncertainty’ for a player. However, we have seen that even if this
assumption could be justified, say by appeal to the Partition Theorem,
it would not give i.p.’s for the ‘topical’ variable s. Moreover, since i.p.’s
do not ‘project outwards’, the i.p.'s over courses of play for which
our theorems provide grounds do not imply i.p.’s for a comprehensive
parameter-vector including s.
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